A nonlinear multi-proxy model based on manifold learning to reconstruct water temperature from high resolution trace element profiles in biogeniccarbonates
نویسندگان
چکیده
A long standing problem in paleoceanography concerns the reconstruction of water temperature from δ18O carbonate. It is problematic in the case of freshwater influenced environments because the δ18O isotopic composition of the ambient water (related to salinity) needs to be known. In this paper we argue for the use of a nonlinear multi-proxy method called Weight Determination by Manifold Regularization (WDMR) to develop a temperature reconstruction model that is less sensitive to salinity variations. The motivation for using this type of model is twofold: firstly, observed nonlinear relations between specific proxies and water temperature motivate the use of nonlinear models. Secondly, the use of multi-proxy models enables salinity related variations of a given temperature proxy to be explained by salinityrelated information carried by a separate proxy. Our findings confirm that Mg/Ca is a powerful paleothermometer and highlight that reconstruction performance based on this proxy is improved significantly by combining its information with the information for other trace elements in multiproxy models. Although the models presented here are black-box models that do not use any prior knowledge about the proxies, the comparison of model reconstruction performances based on different proxy combinations do yield useful information about proxy characteristics. Using Mg/Ca, Sr/Ca, Ba/Ca and Pb/Ca the WDMR model enables a temperature reconstruction with a root mean squared error of ±2.19 C for a salinity range between 15 and 32. Correspondence to: M. Bauwens ([email protected])
منابع مشابه
بهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملFinite Time Terminal Synergetic Controller for Nonlinear Helicopter Model
In this paper, an almost new control approach called terminal synergetic control which works based on user defined manifold is applied to a nonlinear helicopter model. Stability analysis is convestigated using Lyapunov stability theory. Synergetic controller is applied to this nonlinear fifth-order helicopter model to control height and angle. Simulation results showed that it has faster and sm...
متن کاملآموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک
In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...
متن کامل